
Document Page Structure Learning for Fixed-layout E-books
Using Conditional Random Fields

Xin Taoa, Zhi Tangab and Canhui Xuab

aInstitute of Computer Science and Technology, Peking University, Beijing, China;
bState Key Laboratory of Digital Publishing Technology, Beijing, China

ABSTRACT

In this paper, a model is proposed to learn logical structure of fixed-layout document pages by combining
support vector machine (SVM) and conditional random fields (CRF). Features related to each logical label and
their dependencies are extracted from various original Portable Document Format (PDF) attributes. Both local
evidence and contextual dependencies are integrated in the proposed model so as to achieve better logical labeling
performance. With the merits of SVM as local discriminative classifier and CRF modeling contextual correlations
of adjacent fragments, it is capable of resolving the ambiguities of semantic labels. The experimental results
show that CRF based models with both tree and chain graph structures outperform the SVM model with an
increase of macro-averaged F1 by about 10%.
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1. INTRODUCTION

Recently, mobile reading has become an increasing requirement of document application. Due to the variety of
device display sizes, electronic book (e-book) reading lacks practical usability for traditional documents like PDF,
which is a widely used format for document generation and web publishing. The growing need for reflowable
documents has fueled the research on converting the fixed layout documents like legacy PDF so as to enhance
the reading experience. A reflowable format allows the reader to adjust the contents to various display devices
with different display areas.

To ensure successful conversion of PDF to reflowable formats like EPUB or CEBX,1 reliable document
structure analysis is a crucial procedure. Document structure analysis consists of sequential stages such as
physical segmentation involving blocks or lines and logical analysis including assignment of semantic labels to
the segments and determination of their relationships. The task of logical structure analysis is still an open
problem not only for analysis of traditional image based documents but also for born-digital documents. As an
important subtask of logical structure analysis, logical labeling aims to infer the intrinsic semantic purpose of
each segment. Though one may guess the logical role of an individual document segment independently without
regarding others, the contextual interactions are assumed to be additionally informative.

In this paper, we take full consideration of the inherent PDF attributes including raw content streams,
spatial coordinates, text patterns and typesetting information to characterize document page fragments. Besides
of local evidence, inter-fragment relationship is modeled to improve performance of logical labeling. The intra-
page dependencies are learnt by applying 2D CRF framework over neighborhood based graph structures. While
local features exhibit less discriminative ability, the contextual information can profit the logical classification.
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2. RELATED WORK

With regard to layout analysis of legacy PDF document, there exist several pioneering groups during the last
decade. DIVA research group proposed a reverse engineering tool XED2 to analyze the embedded resources of
PDF files and generate their physical structures in a format XCDF.3 Based on the application of XCDF format,
another interactive system Dolores4 was presented to recover logical structure of newspaper through neural
network learning mechanism. Marinai described a rule based system to identify the table of contents5 and the
notes in the text for converting certain PDF books into a reflowable XHMTL based format.6 Chao developed a
heuristic method to extract outlines, style attributes and contents which are expressed in XML for the reuse or
modification of PDF document page.7 Tang focused on the conversion between fixed-layout and fluid document
with research results involving paragraph recognition,8 mathematical formula identification,9 graphic component
recognition10.11 Déjean exploited different streams contained in PDF files to organize empirically the documents
in blocks by XY-cut segmentation and then converted them to XML structured files.12 Most existing geometric
layout analysis are specialized for certain types of documents through heuristic top-down, bottom-up or hybrid
methods.

Compared with well researched segmentation based geometric layout analysis, logical structure recovery has
far less available literature due to its inherent complexity. In the field of image-based document analysis, there
were various attempts in logical structure recovery with exploitation of document geometric layouts. Tsujimoto
transformed the geometrical layout tree into a logical layout tree using generic rules for multi-columned documents
like technical journals and newspapers.13 Recent researches regarding logical layout analysis have considered
machine learning methods as alternative remedy to avoid the inflexibility and rigidity of manually built rule
systems. Rangoni used an transparent artificial neural network and resolve ambiguous results through a feedback
mechanism.14 Montreuil15 adpoted CRF to extract logical layout of unconstrained handwritten letters. Shetty16

used CRF to label segments of scanned documents as machine-print, handwritting and noise. It is claimed that
the logical layout analysis methods have no standardized benchmarks or evaluation sets,17 which is highly desired
in this field.

Among the machine learning based extraction of structural information methods, it is noteworthy that
conditional random fields (CRF) is reported to gain better performance than Hidden Markov Models,18 or
Support Vector Machines1920 in the fields of text processing and handwriting recognition. Other published
linear chain CRF based logical structure detection also declares its effectiveness for documents in scholarly
digital libraries.21

3. CONDITIONAL RANDOM FIELDS

3.1 Probabilistic Framework

Since the goal of document logical layout analysis is to assign a correct label for each physical fragment in a page,
we can formulate this task as a classification problem. Let the fragments be indexed by i, Yi be the multinomial
random variable indicating the logical role of a fragment whose value can be taken from a label set L, and Xi

be the observations characterizing the fragment. The model P (Y |X) then describes the distribution of logical
labels Y = {Yi} given observations X = {Xi}. With each vertex associated with a random variable Yi and edges
connecting correlated random variables, a graph is defined as G =< V,E >, where V and E denote the vertices
and edges respectively. (X,Y ) is a conditional random field if the variables Y , when conditioned on X, satisfy
the Markov property with respect to G:

P (Yi|X, YV \i) = P (Yi|X, YNi
), (1)

where Ni = {j|(i, j) ∈ E} is vertex i’s neighborhood. An assignment to X is denoted by x, and an assignment to
a clique c ∈ G is denoted by xc. The notations are similar for Y . By the Hammersley and Clifford theorem, the
conditional probability distribution P (Y |X) factorizes over G into unnormalized potential functions Ψc(xc,yc)
on maximal cliques

p(y|x) =
1

Z(x)

∏
c∈G

Ψc(xc,yc), (2)
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where Z(x) =
∑

y′
∏

c∈G Ψc(xc,yc) is the partition function that sums over all possible assignments to Y .
Taking the log linear model, the potential function can be parameterized as

Ψc(xc,yc;λc) = exp

{∑
k

λckfck(xc,yc)

}
(3)

where {fck(xc,yc)} are feature functions of clique c associated with weights {λck}. In order to reduce model
complexity, the cliques can be further grouped into a set of clusters C, where Cp ∈ C is called a clique template.
Cliques belonging to a clique template Cp share the same parameters λp = {λpk}.

3.2 Parameter Estimation and Inference

Given parameterization of CRF defined above, the conditional log likelihood of a dataset with known labels is
formulated as

`(λ) =
n∑

i=1

 ∑
Cp∈C

∑
Ψc∈Cp

logΨc(x
(i)
c ,y(i)

c ;λp)− logZ(x(i))

 (4)

where n is the number of data instances.

Parameter estimation is performed by maximizing the penalized conditional log likelihood with respect to λ.
The maximization is accomplished by a quasi-Newton optimization method L-BFGS,22 which gradually adjusts
the weight vector iteratively until convergence. Inference is required to calculate Z(x) and p(y|x). We chose
Tree Belief Propagation because exact likelihood can be obtained within tractable time with our model. The
inference is also used to acquire the marginal probabilities of random variables y of dataset with unknown labels.
Then the labels are predicted as the assignments that maximize the marginal probabilities of each yi.

4. MODELING FOR LOGICAL ANALYSIS

Logical analysis is carried out on the scale of fragments, which are attainable in the procedure of physical
segmentation by grouping the primitive contents with homogeneity and geometric proximity. In most cases, a
fragment is an aggregation of adjacent basic elements, whose size is no larger than a text line. Taking fragments
as the model input is an appropriate granularity for the reasons that they provide richer feature description when
compared with characters and require less sophisticated physical segmentation algorithms than blocks.

It is believed that a fragment provides its inherent local observation, and expresses contextual dependencies
together with its neighbors. To incorporate both the local and contextual evidence in our CRF model, two types
of clique templates are introduced to determine the potential functions, namely unary potentials and pairwise
potentials which are expounded in following subsections.

4.1 Unary Potentials

The unary potentials describe how likely a logical label should be assigned to a fragment isolately. Given the
features of a fragment i, its unary potential can be parameterized in the form of Equation 3, where yc in this case
contains a single variable yi. The selection of {fck} has significant impact on discriminability of the whole model.
In this work, we derive feature functions from outputs of an effective local classifier. Support Vector Machine
(SVM) is known to be one of the best state-of-the-art local classifiers for its advantages of generalization properties
and maximum margin nature. We convert scores of SVM classifier to posterior probabilities psvm(yi = l|x) by
Platt’s method,23 and define the local feature functions as

fs,l(yi,x) = 1{yi = s}log(psvm(yi = l|x))

where s, l ∈ L, and 1{yi = s} denotes an indicator function which equals 1 if yi = s and 0 otherwise. We also
share the parameters {λs,l} over all the fragments.

To obtain log(psvm(y|x)), we need to train a SVM model by providing concrete local observations. We distill
basic attributes from PDF files using a commercial parser (open source tools like PDFBox24 can serve the same
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purpose). Four types of observations are further derived from these PDF attributes , including spatial coordi-
nates, text patterns, typesetting and raw content streams. Analogous to image document analysis, geometric
observations are extracted from fixed-layout documents. Besides, fixed-layout documents offer precise text of
textual contents. Typesetting information such as font sizes are included to enrich discriminating capacity for
classifiers. We choose a set of 31 observations to characterize fragments, which are standardized with means of
0 and standard deviations of 1. These observations are described detailly in Table 1

Table 1. Observations for unary potentials

Observation type Observation name Description

Geometric Height normalized height
Width normalized width
Area normalized area
Aspect ratio min(width, height) / max(width, height)
Position relative position of each fragment within a page

Textual Has digit whether text contains digit
All digit whether all letters are digits
Is uppercase whether all letters are uppercase
Math whether text contains math symbols or greek letters
Digital number detect the pattern of containing or being digits
Figure caption pattern whether text has figure caption pattern
List item pattern whether text has list item pattern
Above fragment text pattern fragment above has certain text pattern

Typesetting Font size greater/smaller/equal compared with dominant font size
Indent level discretized indent level

Content type Source type raw content type of fragment, e.g. text, image or path
Is above fragment image fragment above belongs to raw content type image

4.2 Pairwise Potentials

The pairwise potentials reflect the semantic dependencies between connected fragments, conditioned on the
observations. In graph G, pairwise potentials are defined on cliques involving two adjacent random variables. It
is expected that the interactive influence will regularize the probabilities estimated by unary potentials. Given
that two random variables i and j are connected in the graphical model, their pairwise feature functions are
defined as

fs,t,k(yi, yj ,x) = 1{yi = s, yj = t}gk(x)

where s, t ∈ L, {gk(x)} are the pairwise observations indexed by k. 1{yi = s, yj = t} is an indicator function
which equals 1 if yi = s and yj = t. With parameters of the feature functions shared across the pairwise clique
template, the potentials are also parameterized in the form of Equation 3

A set of K = 6 pairwise observations are extracted for each pair of adjacent fragments like geometric
relationships, typesetting and raw content streams. These observations are normalized between 0 and 1. The
specific pairwise observations gk are described in Table 2. The pairwise features are required for modeling the
affinity of logical labels of a fragment pair in our application. Generally, when the transition of labels is a
common occurrence, the learning process would assign the corresponding weight a larger value to maximize the
objective function. Therefore, the weights are trained to prefer label combinations conforming to known data.

4.3 Graph Structure

The legitimacy of graph structure is also important to build the model. Heterogeneous edges in clique templates
can confuse parameter estimation and weaken the discernment of model. As for the problem of logical labeling,
we focus on the locality of fragments within a document page. The intuition is that either neighboring fragments
follow semantic consistency, or there exist certain regularities in transitions of their logical roles.
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Table 2. Observations for pairwise potentials

Observation type Observation name Description
Geometric Alignment Alignment properties including left, right or central alignment

Y distance Distance of the two fragments along y axis
Height ratio ratio between the heights of the fragments
Width ratio ratio between the widths of the fragments

Typesetting Font size whether the two fragments have same font size
Content source Source type whether the two fragments have same raw content type

To treat a page as a graph, centroids of bounding boxes of the fragments are extracted as vertices, and edges
are created between these vertices. With the edges measured by Euclidean distance, a minimal spanning tree
(MST) is constructed to establish neighborhood of each fragment within the page. The minimal spanning tree
is a global optimum that ensures the sum of the edges distances is minimal among all possible spanning trees of
the same graph.

An alternative graph structure, called column graph, is chain-based rather than tree based graph like MST.
It is observed that in most languages, document contents have vertical aligned layout. For each fragment, we
search for a nearest neighbor that is below the current fragment and overlaps it along the horizontal orientation
to establish an edge. The column graph is more locally constructed compared with the minimum spanning tree,
aiming to mimic the natural reading order.

(a) MST (b) Column graph

Figure 1. An example of MST and column graph structure construction within a PDF document page. Fragments are
bounded with rectangle boxes. The graph structure is depicted by solid lines connecting the centroids of fragments.

We build the CRF model from these two structures: minimum spanning tree graph and column graph.
Figure 1 visualizes the construction of both MST and column graph on bounded fragments of a two column
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PDF document page. The minimum spanning tree graph expresses geometric adjacency of the fragments, while
column graph simulates the logical order.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup

To accomplish precise quantitative evaluation for logical structure extraction methods, a representative data set
with complete physical and logical ground-truth information is indispensable, though its construction can be
very time-consuming. A ground-truthing tool can facilitate the labeling process. In our work, a GUI application
based on wxpython is developed to accelerate manual annotation of the dataset.

With regard to data source, 124 PDF document pages are selected from 25 e-books in English and Chinese
at the proportion of 1:1. Chinese books are provided by Founder Apabi digital library, and English books are
selected among books crawled from web. The layouts of the selected pages within each e-book have single-
columned and double-columned styles with the distribution of 1:1. The types of these books vary from social
or scientific library books to academic journals and magazines. Using the ground-truthing tool, we manually
marked 4642 fragments in total with logical labels. There are three separate content streams parsed from PDF:
text, image and path primitives. Every fragment contains only one kind of content stream source, e.g. body text
fragments include only primitives from text content stream. The positions of bounding boxes, unique IDs, and
all children IDs of fragments are recorded in an XML file.

A set of total 13 semantic labels are defined, including body text, title, figure, figure caption, figure caption
continuation, list item, list item continuation, equation, page number, footer, header, footnote, and marginal
note. Each fragment is assigned with a corresponding semantic label. The label “figure caption” actually
indicates the first line of a figure caption, distinguishing from its continuations. The label “list item” is similarly
defined. Marginal note here refers to complementary texts at the left or right margin within the page. Footnote
contains a note of reference, explanation or comments beginning with numerical or customized marks such as ∗ or
† near the bottom of the page. The original PDF documents, along with their physical and logical ground-truth
are accessible publicly from http://www.icst.pku.edu.cn/cpdp/data/marmot_data.htm.

5.2 Evaluation

The performance is evaluated on the fragments using precision P , recall R and F1-measure defined as 2·P ·R
P+R .

Among 13 semantic labels, as can been seen from Table 3, the distribution of fragments over each semantic
label is highly imbalanced. Majority of the fragments belong to body text, which in this experimental setting
possess a percentage of 65.5%. Hence, accuracy measure results can be misleading. More comprehensive metrics
including macro- and micro-averaged F1 are used respectively. Macro-averaged metrics weigh each label equally
and compute their arithmetic mean, and micro-averaged metrics weigh each fragment equally and calculate the
arithmetic mean.

To evaluate the proposed method, both unstructured and structured classifiers, including SVMs and CRFs
are compared. The SVM models are trained in a one-against-all manner for multi-class recognition with Radial
Basis Function (RBF) kernel. Probability estimates of the SVM models are calculated using five-fold cross-
validation, and then fed to CRF models to generate unary potentials. CRF models are trained employing the
graph structures described in 4.3. Given that the unary and pairwise feature sets are kept unchanged, the
performance is able to reflect the effectiveness of the two graph structures. All the results regarding precision,
recall and F1-measure are averaged over 10 trials. Different SVM and CRF models are trained and tested across
the trials. For each trial, the total 124 PDF document pages are divided randomly into training and testing sets
in a ratio of 2:1.

Table 3 summarizes the performance of the models mentioned above. As can be seen from the table, body
text dominates most other semantic labels. Under such condition, the marco-averages are able to provide more
informative results, among which the CRF model clearly proves its improved overall performance over SVM
model about 10% for precision, recall as well as F1-measure. The micro averaged metrics increased by around
4%, which implies most improvements occurred in minority labels other than body text. Figure 2 illustrates
ground-truth and classification results of SVM-CRF(MST) on a sample page.
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Table 3. Comparative performance between SVM and SVM-CRF methods with different graph structure

Label #Frag
SVM SVM-CRF(COL) SVM-CRF(MST)

Precision Recall F1 Precision Recall F1 Precision Recall F1

Body 3041 89.49 95.37 92.33 92.90 97.00 94.91 91.42 96.28 93.79
Equation 196 92.55 93.29 92.92 90.87 93.77 92.30 88.98 87.48 88.23
Figure 208 62.48 68.43 65.32 68.89 64.69 66.72 73.96 70.69 72.29
FigureCap 92 81.48 66.67 73.33 79.24 62.69 70.17 79.64 62.86 70.26
FigureCapCont 154 37.15 25.98 30.57 41.02 41.02 41.02 36.77 38.03 37.39
Footer 41 51.72 30.61 38.46 73.57 70.07 71.78 75.97 79.67 77.78
Header 125 62.13 55.21 58.46 74.94 80.39 77.57 81.28 79.05 80.15
ListItem 159 97.67 83.78 90.19 97.08 81.33 88.51 97.74 70.47 81.89
ListItemCont 188 43.38 24.10 30.99 87.79 63.93 73.99 90.04 74.45 81.51
Marginal 100 86.67 82.76 84.67 98.14 84.08 90.57 98.05 81.13 88.79
Note 83 57.44 39.86 47.06 83.12 45.55 58.85 83.83 49.30 62.08
PageNum 106 86.93 86.44 86.69 84.62 90.11 87.28 84.55 90.13 87.27
Title 149 78.31 76.97 77.63 83.11 80.81 81.95 83.44 78.97 81.14

Micro-Averages - 84.59 84.59 84.59 88.78 88.78 88.78 87.93 87.93 87.93
Macro-Averages - 71.34 63.81 66.82 81.18 73.51 76.58 81.97 73.74 77.12

(a) ground-truth (b) results of SVM-CRF(MST)

Figure 2. (a) Ground-truth of a sample page. The logical labels are displayed by rotated blue text. (b) Results of
SVM-CRF(MST) model. Only classification errors are displayed in red.
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Some of the logical labels have instances with explicit features. Consequently, they are accurately recognized
by the SVM models. Whereas other semantic classes are easily confused with body text due to lack of local
characteristics. The ambiguities are significantly alleviated when CRF model is adopted. For example, it is hard
to tell list item continuations from body texts, except that they are continuous in logical order and follow an
list item line initialized with an obvious bullet. SVM model classifies these fragment independently, and has a
relatively lower performance as expected (with F1 measure of 30.99% for label ListItemCont). It is noteworthy
that this affinity of neighboring labels is better captured by the CRF model (with F1 measure of 73.99% and
81.51% for label ListItemCont). Similar tendency can be observed over other labels.

Though both the minimum spanning tree and column CRF models precede the SVM model, neither of them
obviously defeats the other on our dataset. We attribute this result to the limited differences between their
graph structures. It is expected that combining various purposed graph structures could contribute to further
performance improvement.

6. CONCLUSION AND FUTURE WORK

This paper has proposed a conditional random field method for the logical structure analysis of born-digital
fixed-layout documents. In addition to local evidence of individual fragment, relationship between fragments is
also incorporated in the CRF model. The feature engineering is carried out by exploiting only the inherent PDF
attributes. The experimental results reveal that CRF model significantly outperforms the non-structured SVM
model. Though the logical labels are highly imbalanced, CRF model still benefits from neighboring dependencies
and achieve remarkable reduction of confusions between ambiguous semantic classes. By virtue of the generality
and flexibility of CRF model, we believe that it is promising to achieve better performance by extending feature
sets and exploring higher-level dependencies.
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